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THE PROJECTION CONSTANT OF
FINITE-DIMENSIONAL SPACES WHOSE
UNCONDITIONAL BASIS CONSTANT IS 1

BY
CARSTEN SCHUTT

ABSTRACT

The relations of the projection constant A(E) and the isomorphic distance
d(E, 1) of finite-dimensional spaces E whose unconditional basis constant is 1
are investigated. It turns out that both are proportional to the norm of a certain
vector in E.

1. Preliminaries

In this paper we shall use standard notations of the theory of Banach spaces.
Let us just recall that the isomorphic distance between Banach spaces E and F is
defined by

d(E, F): = inf (71",
where the inf is taken over all isomorphism J of E onto F. If there are no
isomorphisms we define d(E, F): = «. Every Banach space E can be embedded

isometrically in a space [ for a suitable d. Let namely d C E’ be a subset so that
the closed convex hull of d is the unit sphere of E' and define I: E — I3 by

1 I(x) = ({2, x)):ea

Let E, be the image of an embedding map in a space /3. Then we define the
projection constant of a Banach space E by

A(E): =inf{| P|| P: 13— E,, P projection}.

We define A (E): = » if there is no projection. A (E) is well-defined because it is
independent of how E is embedded. In the following we only deal with
finite-dimensional spaces E. We define [3] the coordinate asymmetry of a basis
(€:)i=1..n of E by
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2" £:a:€;
X((e‘)--l.~~~.u)1 = sup "nl
i | X ae

i=]

The coordinate asymmetry or the unconditional basis constant of E is
X(E) = (c.),.lpf‘.CE X((en )I-I.'“.Il)'

Lindenstrauss and Pekczyiiski [5] proved that
d(E, 17)= KA (EYX(E),

where K is the Grothendieck constant. We are dealing in this paper with spaces
with x(E)= 1. As the main result we get (Corollary 2): Suppose (€ )i-1.... is a
normalized basis of Banach space E with y((e)i-i...)=1 and |2, ae | =
(Er.1a?)t. Then A(E) and d(E,[7) are, up to a universal constant, equal to
125 el

By renorming a basis whose coordinate asymmetry is 1 we can restrict
ourselves to the case that E isR" with anorm | [le, || |- =1 |le =| |, and the unit
vectors are a basis with coordinate asymmetry equal to 1. The most important
analytical tool we use is the Khintchin-inequality for p =1 [7]

@ Cl(@)omrsm nz.éz-fg S r)a| 1@, ol

satisfied by the Rademacher-functions
r::{lv"'$2"}_){+1s_l}) i=1""’n-
Szarek [7] proved that C, = 1/V2.

2. An estimation of the projection constant
The aim of this paragraph is to prove the following theorem.

THEOREM 1. Let E be R" with the norm | ||e, || [« =1l le =|| |\, and let the unit
vectors be a basis whose coordinate asymmetry is 1. Then

1 . -
5100 Dl (min Iylk) 5 A(E)
3 _
=min{Vn,|@1, -, De}

and
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-\}—5 (max Iz “1) (IIIHlaX Iz ”2>_l =A(E)

lzlie=1 lzhe=1

4)
= min {\/;, max |z II,}

lizlle-=1

Before we prove the theorem we just make some remarks on the proof and we
give some corollaries.

In the proof of Theorem 1 we can restrict ourselves to spaces with polyhedral
unit spheres by using a standard approximation argument. Therefore we can
choose a special embedding map (1). Moreover we can find a finite set M of
functionals with positive components so that the convex hull of

M = {(Z (i)f,- (j))i-l.---.n

where r, i =1, -- - n are the first n Rademacher-functions, is the unit ball of the
dual space. As a special embedding map we choose I defined by

zeM,j=1,.--,2"},

&) I(y): = (O G))imtom Y Nimri27)rem-
We define
(6) Xi. = I(e.-) = ((Z (l )r.- (j)),'-l,---,z" )zEM-

CoORrOLLARY 2. Let E be R" with the norm || |eand || |-=|| |le =|| ||.- Suppose
that the unit vectors are a basis whose coordinate asymmetry is 1. Then

1
— |, --
Vil
Proor. Trivial.
CoroLLARY 3. Let E be R" with the norm || ||z and | ||-=|| le =|| |- Suppose
that the unit vectors are a basis whose coordinate asymmetry is 1. Then

1 i< < ®) <
\/_5(”(1,'“,1)”5)=)‘(E)=d(E,1n)=”(1, s Dle.

Proor. In order to verify the left-hand side inequality we just have to
observe

-1
min 1yl = (max 1y )

llyllg = lyle=

= (gmas 1v1E)”

liylle =1
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Because of || [l-=| ||z we get

-
= (max Iyh)
=L Dl

ProoF oF THEOREM 1. (3) is just the dual formulation of (4). The right side
estimation in (4) is obtained by considering the identity map I : I;— E and
getting

IZIIE ) = max [z
2

and a result of Kadec and Snobar [4].

We prove now the left side inequality. Because of an approximation argument
we can restrict ourselves to spaces E with a polyhedral unit sphere. We use the
embedding map (5) and get as a representation for projections

@®) P(x)=z<f,-,|x>x(

where (f.);-1... are functionals that are biorthogonal with respect to the
(xi)i=1,.» defined by (6). The components of a functional f, i =1,---, n, are
denoted by f%, z € M, so that we have

(xuf)= 2 z()fi = §

ZEM
Then
1P| = max 2 (fo x)x;
= max max 2 (f, x)z (i) ,
X feo=1 zEM i=1
= max max <E z(i),-,x>
cen Ixe=1 |\

= max Z

ZEM weM

32|

From the Khintchin-inequality (2) we get that

© 1Pz Cimax 3 1 ()f s o

wEM
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On the other hand (f);_,.... are orthogonal to (x;)i.1.... Thus

2 fiw(i)=1 forall i=1,---n.

Hence
> fiw(i)z(@i)=z(i) forall i=1---n and zEM

and

lzlh= 2 KErz(@)msm W)

= E Iw 1 (F7 2 ())im1m 2
< (max 1w l) S 1672 00enl

Therefore

Izl (max W) = 3 16720l

weEM

With (9) we get
1Pl C, max, Iz (max fz]k) -

With that Theorem 1 is proved.

REMARK 4. In Theorem 1 we can use a weaker hypothesis than y(E)= 1.
We just need that there is a z € E’ with ||z |, = max;,;..-:||y |l and

l@rG)i=1nlee=1 forall j=1,--+2"

Now we want to apply our results to the n-dimensional Orlicz spaces I%. Let H
be a convex function

H:R—R"
with H(0)=0, H(1)=1, H(x) = H(|x|) for all x €R, and H(x) # 0 for all x # 0.

I is R* with the norm generated by the unit ball.

[y en"’ 2 H(y(i) = 1}.
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CoroLLARY 5. (i) Let H(x)= x*. Then

\/LE <H“ (i)) < A(Y)=d(% 1)< (H“ (i—))

(i) Let H be differentiable and H'(x)/x be strictly monotone on (0, 1). Moreover,
let (VnH™'(1/n))men be a decreasing sequence. Then

\/géz\(li')gx/ﬁ.

(i) is an immediate consequence of Corollary 2 and (ii) can be verified by
applying Theorem 1 and using Lagrangian multipliers. Let us note that Corollary
5 covers the cases of /%, 1 =p =, which are already treated by Gordon [1],
Griinbaum [2], and Rutovitz [6]. (ii) improves the inequality achieved by Gordon
[1] slightly.
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